字体大小

小字标准大字

背景色

白天夜间护眼


第二章 蓝色海洋的浩劫1

海洋面临的污染污染

在海洋中,相对不受直接污染的情况下所测定的某一历史时期、某特定环境下元素或化合物的含量称为海洋污染背景值。诲区不同历史时期内的背景值是有差异的,因此也有人将背景值定义为被研究海区的“最低记录值”。在背景值的测定中,需要在远离污染源的地方采集样品,分析污染物的含量,在此基础上,运用数理统计等方法检验分析结果i然后取分析结果的平均值(应给出不确定值)作为该区域的环境背景值。

海洋污染物背景值的测定和研究,是海洋环境科学的一项基础性工作,可为环境质量的评价和预测、污染物质在环境中的迁移转化规律和海洋环境标准的制定等提供科学依据。各污染物在不同地貌单元海区的背景值有显著的差异,造成这种差异的原因主要是由于物质来源、元素或化合物理化性质、输入途径等诸多因素综合作用的结果。

在海洋环境中污染物通过物理、化学或生物过程而产生空间位置的移动,或由一种地球化学相(如海水、沉积物、大气、生物体)向另一种地球化学相转移的过程称为污染物的迁移,污染物由一种存在形态向另一种存在形态转变则称为污染物的转化。迁移与转化是两个不同的概念,但迁移过程往往同时伴随发生形态转变。

污染物在海洋环境中的迁移转化过程主娄包括以下3种:①物理过程:污染物被河流、大气输送入海,在海气界面问的蒸发、沉降;入海后在海水中的扩散和河流搬运;以及颗粒态污染物在海洋水体中的重力沉降等,都属于物理迁移过程。②化学过程:由于环境因素的变化,污染物与环境中的其他物质产生化学作用,如氧化、还原、水解、络合、分解等,使污染物在单一介质中迁移或由一相转入另一相,都属于化学迁移过程。③生物过程:污染物经海洋生物的吸收、代谢、排泄和尸体的分解,碎屑沉降作用以及生物在运动过程中对污染物的搬运,使污染物在水体和生物体之间迁移,或由一个海区或水层转到另一海区或水层,以及在海洋食物链中的传递,都属于生物转运过程。

污染物的迁移转化既有有利影响,也有不利影响,即有时有利于污染物毒性降低或消除,但有时反而使污染物毒性增加,或使其污染影响范围和程度扩大,尤其是通过食物链的富集作用,使得某些污染物能够最终富集于人体,对人体健康产生不利影响。而某些污染物的迁移转化甚至能够引起区域性乃至全球性的环境问题,如全球温室效应和酸雨问题。

持久性有机污染物是指具有高毒性、进入环境后难以降解、可生物积累、能通过空气、水和迁徙物种进行长距离越境迁移并沉积、到达远离排放地点的地区,随后在那里的陆地生态系统和水域生态系统中积累起来,对当地环境和生物体造成严重负面影响的天然或人工合成的有机物。

与常规污染物不同,持久性有机污染物在自然环境中滞留时间长,很难降解,毒性极强,能导致全球性的传播。这类污染物通过直接或间接的途径进入人体,会导致生殖系统、呼吸系统、神经系统等人体器官中毒、癌变或畸形,最后造成死亡。

2001年5月在瑞典首都斯德哥尔摩签署了《关于持久性有机污染物的斯德哥尔摩公约>(简称《斯德哥尔摩公约》)。这个《公约》确定在全世界范围内禁用或严格限用12种对人类、生物及自然环境危害最大的持久性有机污染物,分别是:艾氏剂、狄氏剂、异狄氏剂、滴滴涕、七氯、氯丹、灭蚁灵、毒杀芬、六氯化苯、二恶英、呋喃以及多氯联苯。

根据现有的调查,持久性有机污染物已经把人类最大的环境——海洋深深地污染了,使得海水在一定程度上变成了“毒水”。2000年3月,美国海洋联盟的科学家乘坐“奥德赛”号从美国加利福尼亚州的圣迭戈市出发,开始对全球海洋食物网的污染状况进行调查研究,船上的12名成员对散布于全球各海域以鱼和巨型乌贼为食的抹香鲸进行了研究结果表明,这些大型海洋哺乳动物的肌肉纤维内积累了大量的有机污染物。

海水污染指示生物是指在一定的海水水质条件下生存,能对海水水体中污染物产生各种定性、定量反应而被用来监测和评价水体污染状况的水生生物。浮游植物、浮游动物、着生生物、底栖动物、鱼类和微生物等均可作为海水污染的指示生物。各种不同类群的指示生物在自然水域的自净过程中起着非常重要的作用。

不同污染程度的水体中有着不同的污水生物群。有些敏感种类的水生生物只适于在清洁水中生话;而有些耐污种则可以在污水中生存,对污染物及不良环境有着较强的忍受力和抵抗力。水生生物的存亡标志着海水水质变化程度,因此除了化学方法外,还可以利用水生物作为海水污染指示生物,也就是可以借助手海水水体中出现的水生生物的种类和数量来评价海水污染的状况。许多水生生物对海水中有毒污染物很敏感,也可以通过水生生物毒性实验来判断水质污染程度。此外,除了利用指示生物对海水水体污染程度作出综合判断外,还可以利用某些生物的行为变化和生理指标等对海水污染进行定性分析,如牡蛎肉体颜色的改变可以反映海水中铜离子的污染。

生长在船底和其他海洋设施表面上的动物、植物和微生物,称为海洋附着生物或海洋污损生物。这类生物一般是有害的,且附着在人工设施的表面上,不同于海洋岩礁上的固着生物以及养殖的贝、藻类和钻孔生物。海洋污损生物已发现有4000—5000种,在我国沿岸已经记录有650种左右,分别隶属于海洋菌类、藻类以及海洋动物中的水螅、外肛动物、尤介虫、双壳类、藤壶和海鞘等类群。污损生物群落的成员通常都要经历由少到多、个体由小到大的发展过程。浸在海水中无毒物体的表面,一般经过1~2小、时就会有细菌和硅藻附着。它们分泌黏液,连同原生动物、小型线虫、轮虫、海藻孢子及其他有机碎屑等,形成一层微生物黏膜,然后开始肉眼可见的大型生物附着。经过发展和演替,大约在1~2年后,群落达到相对稳定的阶段。

海洋污损生物严重危害海洋设施,增加船舰航行的阻力;缩小海水冷却管道和热交换器的冷凝管管径;加速海上结构的腐蚀;使海中的仪表和机械失灵;增加海中建筑物桩、柱的截面积,加大波浪和海流的冲击力;吸收声能,使声学仪器减效或失效等。因此在船舶和海洋结构物表面采用防附涂料,管道采用紫铜等方法防止海洋生物污损。但是,防附涂料中的毒性物质抑制了污损生物的附着和生长的同时也加重了海洋污染,而更安全有效的防治海洋污损生物的方法还有待进二步研究。

可怕的废水污染

任何企业都需要水,并且随着企业规模、性质不同,对水量、水质和水温的要求也不一样。任何企业都要排污水、废水,由于所需原料、燃料和工艺流程不同所排放的废水造成的污染程度也不相同。

工业废水污染

随着我国的改革开放政策的不断深入人心,市场经济的逐步完善,沿海居民对滩涂养殖利用面积正逐年扩大。从养鱼、养虾、养蟹、到养殖更有经济价值、更珍奇的水生动植物,这些养殖业的发展带动了水产市场的繁荣,丰富了人民群众的饮食生活,提高了饮食水平,增加了养殖户的经济收入,给一部分人创造就业机会。可是,近几年来,在我国沿海时常发生海水赤潮等海水变质现象。那是什么原因造成的呢?除气候因素外,再就是人为因素所造成的。除前面所述的两种原因以外,还有一种非常重要的原因,就是陆地工厂对海洋的污染。陆地工厂对海洋的污染主要表现在:①与海相通的河流两岸的造纸厂、化工厂等利用河道排放污水而流入海洋。②含有污染物质的工业垃圾、生活垃圾倾倒河岸或河道,随河水或涨落潮流入海洋。如,2001年天津海事法院受理的河北省乐亭县19家养殖户状告河北省迁安市书画纸业有限公司等五单位滩涂污染损害赔偿纠纷一案,就是典型的陆地工厂利用通海河道排污造成海洋污染的案例。本案19位原告都是在河北省乐亭县王滩镇小河子(滦河)入海口两岸对虾和滩涂贝类养殖区从事日本对虾和青蛤养殖。滦河位于河北省承德市和唐山市境内,从承德流经唐山地区的迁西、迁安、滦县、滦南、乐亭,于乐亭县姜各庄入海。滦河在滦县响螳分流,进入乐亭中部的支流最终流入小河子,在王滩镇新海庄入海,在小河子入海口两岸有上万亩虾池及滩涂贝类养殖区。2001年4月下旬至5月中旬,因滦河上游排放污水造成在小河子入海口两岸部分渔业水域污染丽引起养殖对虾和滩涂贝类死亡事故。事故造成小河子入海口两岸受污染水域的养殖面积共计7056.15亩,其中对虾养殖水面面积6561.15亩,滩涂贝类养殖面积495亩。5月30日调查人员对小河子闸养殖区的对虾和滩涂贝类死亡现场进行调查,结果发现67.96%的青蛤死亡。日本对虾的平均死亡率为51%。造成本次事故的原因系唐山市滦河沿岸工矿企业向滦河排放未经达标处理韵污水所致。

2005年河北省海域未达到清洁海域水质标准的面积约1176平方千米,其中,中度污染海域111平方千米,严重污染海域97平方千米,其余为轻度污染。重点排污口附近海域污染严重,在监测的31个入海排污口中,多数存在超标排放现象,大部分排海污水指标不符合海洋功能区的水质要求。海洋生物资源呈现不伺程度的衰退趋势,鱼类回游的产卵场和索饵场遭到一定程度的破坏,经济鱼类明显减少且出现小型化、幼龄化。近岸海域海洋生态系统处于亚健康状态,主要表现为生存环境丧失或改变、生物群落结构异常。

由于大量污染物超标超量入海,导致近年来河北省海域赤潮频发,2001年以来发生赤潮18次,对海洋生态环境和养殖业造成了危害。

由于海洋的特殊性,海洋污染与大气污染和陆地污染有很多不同,有其突出的特点:

(1)污染源广。除人类在海洋的活动外,人类在陆地和其他活动方面所产生的各种污染物,也将通过江河径流入海或通过大气扩散和雨雪等降水过程,最终都将汇入海洋。人类的海洋活动主要是航海、捕鱼和海底石油开发。目前全世界各国有近8万艘远洋商船穿梭于全球各港口,总吨位达5亿吨,它们在航行期间都要向海洋排出含有油性的机舱污水,仅这项估计向海洋排放的油污染每年可达百万吨以上。通过江河径流入海含有各种污染物的污水量更是大得惊人。

(2)持续性强。海洋是地球上地势最低的区域,它不可能像大气和江河那样,通过一次暴雨或一个汛期使污染得以减轻,甚至消除。一旦污染物进入海洋后,很难再转移出去,不能溶解和不易分解的物质在海洋中越积越多,它们可以通过生物韵浓缩作用和食物链传递,对人类造成潜在威胁。美国向海洋排放的工业废物占全球总量的1/5,每年因水生物污染或人们误食有毒海产品造成的污染中毒事件达1万起以上。

(3)扩散范围广。全球海洋是相互连通的—个整体,一个海域出现的污染,往往会扩散到周边海域,甚至扩大到邻近大洋,有的后期效应还会波及全球。比如海洋遭受石油污染后,海面会被大面积的油膜所覆盖,阻碍了正常的海洋和大气间的交换,有可能影响全球或局部地区的气候异常。此外石油进入海洋,经过种种物理化学变化,最后形成黑色的沥青球,可以长期漂浮在海上,通过风浪漉的扩散传播,在世界大洋一些非污染海域里也能发现这种漂浮的沥青球。

(4)防治难危害大。海洋污染有很长的积累过程,不易及时发现,一旦形成污染,需要长期治理才能消除影响,且治理费用较大,造成的危害会波及各个方面,特别是对人体产生的毒害更是难以彻底清除干净。20‘世纪50年代中期,震惊中外的日本水俣病,是直接由汞这种重金属对海洋环境污染造成的公害病,通过几十年的治理,直到现在也还没有完全消除其影响。“污染易、治理难”,它严肃告诫人们,保护海洋就是保护人类自己。

农药污染

农药污染也是沿海污染的重要来源,舍汞、铜等重金属的农药和有机磷农药、有机氯农药等,毒性都很强。它们经雨水的冲刷、河流及大气的搬运最终进入海洋,能抑制海藻的光合作用,使鱼、贝类的繁殖力衰退,降低海洋生产力,导致海洋生态失调,还能通过鱼、贝类等海产品进入人体,危害人类健康。

农药及其降解产物(如DDT的降解产物DDD、DDE)在海洋环境中造成的污染。其危害程度按其数量、毒性及化学稳定性有很大的差异。

污染海洋的农药可分为无视和有机两类,前者包括无机汞、无机砷、无机铅等重金属农药,其污染性质相似于重金属;后者包括有机氯、有机磷和有机氮等农药。有机磷和有机氮农药因其化学性质不稳定,易在海洋环境中分解,仅在河口等局部水域造成短期污染。从20世纪40年代开始使用的有机氯农药(主要是DDT和六六六),是污染海洋的主要农药,据美国科学院1971年的估计,每年进入海洋环境的DDT达2.4万吨,该值为当时世界DDT年产量的1/4。

工业上广泛应用于绝缘油、热载体、润滑油以及多种工业产品添加剂的多氯联苯(PCB)和有机氯农药—样,都是人工合成的长效有机氯化合物(按其化学结构可统称为卤代烃或氯化烃),由于它们在化学结构、化学性质方面有许多近似处,所以它们对海洋环境的污染通常放在一起研究。20世纪60年代末,各国认识到PCB对环境的危害,纷纷停止或降低PCB的生产和应用。

有机氯农药和PeB主要通过大气转移、雨雪沉降和江河径流等携带进入海洋环境,其中大气输送是主要途径,因此即使在远离使用地区的雨水中,也有有机氯农药和PcB的踪迹。如南极的冰雪、土壤、湖泊和企鹅体内都检出过残留有机氯农药和PCB。进入海洋环境的有机氯农药,特别容易聚积在海洋表面的微表层内。据苏联国立海洋研究所1976年在北大西洋东北部的观测,DDT及其降解物DDD在微表层盼含量为90纳克/升,而水下的含量为5纳克/升。据美国对大西洋东部的测定,在表层水中PCB的含量比DDT含量高20~30倍。海洋微表层中的DDT受到光化学作用发生降解,其速度受阳光、湿度、温度等环境条件的制约。在热带气侯条件下,降解速率一般较高。沉积于海洋沉积物中的PCB和DDT。在微生物作用下会发生降解作用,但速率相当缓慢。人们认为,PCB的稳定性比DDT高。DDT的降解中间产物DDE比DDT挥发性高,持久性也更长,对环境的危害更大。沉降到沉积物中的DDT和PCB会缓慢地释放入水体,造成水体的持续污染。

DDT和PCB进入生物体内主要是通过生物对它们的吸附和吸收,以及摄食含有DDT的饵料生物或碎屑物质。动物体中DDT的残留量反映了吸收与代谢间的动态平衡。不同种生物对DDT积累和代谢各不相同,牡蛎和蛤仔等软体动物DDT的富集因子可达2000(富集因子是生物体中的浓度除以环境介质中的浓度值),而甲壳类和鱼类富集因子则为10微克/升。

海水中DDT浓度一般低于1微克/升,近岸水体高于大洋水体。近岸海域鱼体中的DDT浓度高于外海同类鱼类,达0.01~10毫克/千克(湿重)。鱼类不同器官中DDT残留量的浓度各不相同,其中以脂肪中的含量最高。摄食鱼类的海鸟DDT残留量最高,摄食淡水及河口区鱼类的鸟类,DDT残留量高于摄食大洋鱼类的鸟类。

PCB对生物的毒害作用与其异构体的氯原子数有关。氯原子越少,毒性越大,在食物链中的蓄积程度越高。PCB对虹鳟的10天致死浓度是38~326微克/升,20天的半致死浓度为6.4~49微克/升。无脊椎动物对于PCB要比鱼类敏感,幼体比成体敏感。PcB对生物的危害作用包括致死、阻碍生长、损害生殖能力和导致鱼类甲状腺功能亢进和对外界环境变化及疾病抵抗力的下降等。PCB会导致哺乳动物性功能紊乱,波罗的海和瓦登海海豹的繁殖失败同其体内高浓度PCB直接相关。

PCB在生物体中的积累与其脂溶性和对酶降解的抗力成正比,而与其水溶性成反比。生物体对PCB韵主要代谢过程是羟基化,即将PCB转化为水溶状的酚类化合物后排出体外。羟基化速率取决于酶(肝微粒体混合功能氧化酶)的活性。鱼体中这种酶的数量大大低予哺乳动物,并随PcB的氯化作用的提高而降低。

DDT及其代谢产物对海洋生物有明显的影响。比如,干扰海鸟的钙代谢使蛋壳变薄,降低孵化率;0.1ppb浓度的DDT就会抑制某些海洋单细胞藻类的光合作用;0.2ppb浓度的DDT即能杀死某些种类的浮游动物或幼鱼。

无序采矿的危害

2006年12月5日广州召开南海区海域使用海沙开采管理工作会议,会上一个非常重要的议题就是,南海区海域存严重的乱采乱挖海沙现象。

据国家海洋局南海分局提供的材料指出,许多沿海地区没有按照国土资源部《关于加强海沙开采管理的通知》和国家海洋局《海沙开采使用海域论证管理暂行办法》及有关法律法规执行。有的地方在海港附近海域采矿挖沙,结果改变了水动力环境,导致了港口的淤积;有的海湾未能及时管理,致使陆地污染物不合理排放,造成污染增加,损害了海洋的生态环境;有的沿岸各涉海产业争相乱挖乱采、抢用海域,交通、水产部门用海交叉重叠,养殖占用锚地和航道;有的地方甚至将沿海海滩、海域视为集体所有,擅自转让、出租;等等。

有专家介绍,海沙的无序无度开采主要危害是造成海滩后退、海岸侵蚀、海水倒灌,严重危及沿岸地区的耕地和淡水资源、滨海旅游资源和港口资源,降低沿海的抗风能力,破坏海底沉积和生态环境,同时还可能导致海洋生物因生存环境的改变而引起的迁徙和大量死亡。

2008年4月,汕尾捷捷胜镇三个滨海村庄的数千村民在短短几年里,眼睁睁看数十千米海岸线上失去了上百米宽的海滩,一个防御台风、海潮的天然屏障,正在悄然快速地消失。

十多年盗采的“恶果”已触目惊心:沙滩以每年20米的速度消失,近岸千亩防护林毁坏近半,每年百万吨海沙被盗采。盗沙祸及的,还有被海滩退缩“吃”掉的建筑设施和公路、成批死亡的鲍鱼、咸潮淹没的良田、严重破坏的海洋生态地形地貌和水文。

汕尾市捷胜镇海域,许多船舶车辆非法盗采、盗挖海沙,十多年来屡禁不止。抽沙船从下午到翌日上午通宵采沙,每晚往返码头卸沙四五次,这些沙船均为“三无”(无舷号、无标志、无采挖许可证)船只,排水量在千吨左右,平时停泊在汕尾港,盗采的海沙也运至汕尾港卸载,由两三个大型沙场囤积销售。

捷胜是当地一座古镇,2001年,广东省政府批准在此建立了65平方千米的保护区,要求当地政府和群众保持保护区内地形地貌,任何单位和个人不得在保护区内私自开发。该保护区负责人告诉记者,近凡年海沙盗采愈演愈烈,“刚来时,这里还有大片的开阔海滩,现在几乎消失殆尽,海岸沿线也已面目全非”。保护区旁的牛肚、东坑、沙坑,是最滨海的三个村庄,受盗沙之害也最深。村民介绍“海上采,陆上挖,这些年几乎没停过”,陆上盗挖主要在沿海防护林一线地域,海上主要分布在保护区及其周边海域。2007年开始,非法采沙变本加厉,海陆轮番盗采。

在保护区有一座四层办公楼旁,该楼2004年前建成时,距海水也有150米的沙滩,到2008年已不足20米,楼房墙角前年被海浪淘空,保护区请来专家现场勘察后,修了段护楼基的防浪堤。“这不过是权宜之计”,防浪堤曾被海浪冲毁,多次出现重大险情,按目前的退缩速度,一旦该区域遭受到台风袭击,楼及周边建筑将直搬到海潮威胁,如果遭遇台风正面袭击,保护区的工作、生活区有被冲毁的危硷。

盗采造成的大量海沙流失,已使保护区周边约15千米海岸线原有地形地貌受到严重破坏。2005~2Q08年,保护区近岸沙滩以年均约20米的速度退缩,区内沙角尾7千米沿岸沙滩年均退缩约50米,个别地段超过80米,多数地段形成“断壁式”的陡坡。

在保护区海边两三米高的陡坡随处可见,据称这些都是海滩退缩后被海水冲刷塌陷的。保护区曾多次组织向内陆搬迁后移,但仍有许多滩头设施装备、建筑物被海浪冲毁或掩埋。“原来岸边有两条往来道路,也被冲得没影了”。

捷胜镇海边居民以农、渔和养殖业为主,多年来,天然海滩一直是防御海潮、台风来袭的天然屏障。2006年台风“珍珠”登陆时,因屏障消失。海潮冲进沙坑村,淹了数百亩水田,致使颗粒无收。一旦遇到强台风正面登陆,海水倒灌,后果不堪设想。

海洋专家分析,如此盗采海沙资源,破坏了海底沉积层和海底生态系统,使海水中的悬浮物质大量增加,会导致海洋生物大量死亡。海岸线附近的大量盗采,造成沙滩后退,海岸侵蚀,海水倒灌,严重破坏了沿岸地区的耕地、淡水资源和港口资源,降低了堤岸的抗风浪能力,直接威胁到滨海居民的生产和生活。

用这些海沙建筑的楼房使用寿命只有5~10年,有关专家称,海沙内含有氯离子,能与钢筋混凝土中的钢筋起化学反应,严重腐蚀钢筋,导致建筑物结构的破坏,使建筑的使用寿命由大大降低,严重威胁到楼房内居民的安全。

随着海洋经济的快速发展,国内外沙矿市场的需求上升,海沙资源大省福建近年来非法开采海沙活动日益猖獗。无度、无序、无偿的采少活动严重破坏了海洋资源与环境。

国家海洋局第三海洋研究所对福建兴化湾、湄洲湾、平海湾的海沙资源和海沙开采影响的监测和调查结果显示,非法海沙开采活动已经造成该海域海沙资源量严重衰退,海底地貌和水动力严重改变,并造成海岸坍塌、退缩、下陷及原生海洋生物物种的变化。

由于长期非法开采海沙,泉州湾海域的鱼类涸游路线、水质已受到严重破坏。以前可见的白海豚现在因涸游路线的破坏而难觅踪迹;另外,当地渔民用于养殖牡蛎的石柱也因为海沙的挖取而根基松动导致坍塌,渔民损失惨重。

2005年11月在江苏省连云港市连云区烧香河北闸附近的海岸边,大批的海沙被偷挖盗采。细腻、金黄的海沙遭受掠夺性开采令人触目惊心。

走进连云区烧香河北闸西侧的海岸边,首先映入眼帘的是海沙被猖獗盗采后留下的痕迹。挖采后的一些坑里的海沙已经不翼而飞,只留下一些拆断的芦苇和石块。

过去这一带的海岸边海沙十分丰富,成为当地海岸边的一道风景。但是由于经常有人盗采,致使海沙大量流失,生态环境受到严重破坏。据了解,从海堤向东南的一些地方,也经常曲现盗采海沙现象。如果在海堤附近过度盗采海沙,有可能导致海堤崩塌、下陷、根基不稳等危险迹象,给海堤造成险情。

危机重重的海洋热污染

海洋热污染概述

海洋热污染是水温异常升高的一种污染现象。天然永水温随季节、天气和气温而变化。当水温超过33~35℃时,大多数水生物不能生存。水体急剧升温,常是热污染引起的。水体热污染主要来自工业冷却水。首先是动力工业,其次是冶金、化工、造纸、纺织和机械制造等工业,将热水排入水体,使水温上升,水质恶化。根据美国统计,动力工业冷却水排放量占全国工业的冷却水总排放量的80%以上。一个装机100万千瓦的火电厂,冷却水排放量约为30~50立方米/秒;装机相同的核电站,排水量较火电厂约增加50%。年产30万吨的合成氨厂,每小时约排出22000立方米的冷却水。

水体增温显著地改变了水生物的习性、活动规律和代谢强度,从而影响到水生物的分布和生长繁殖。增温幅度过大和升温过快,对水生物有致命的危险。

水体增温加速了水生态系统的演替或破坏。硅藻在20℃的水中为优势种;水温32℃时,绿藻为优势种;37℃时,只有蓝藻才能生长。鱼类种群也有类似变化。对狭温性鱼类来说,在10一15℃时,冷水性鱼类为优势种群;超过20℃时,温水性鱼类为优势种群;当水温为25~30℃时,热水性鱼类为优势种群。水温超过33~35℃时,绝大多数鱼类不能生存。水生物种群之间的演替,以食物链(网)相联结,升温促使某些生物提前或推迟发育,导致以此为食的其他种生物因得不到充足食料而死亡。食物链中断可能使生态系统组成发生变化,甚至破坏。

水体升温加速了水及底泥中有机物的物生降解和营养元素的循环,藻类因而过度生长繁殖,导致水体富营养化;有机物降解又加速了水中溶解氧消耗。

某些有毒物质的毒性随水温上升而加强。例如,水温升高10℃,氰化物毒性就增强1倍;而生物对毒物的抗性,则随水温的上升而下降。

水体热污染区域可分为强增温带、适度增温带和弱增温带。热污染的有害效应一般局限在强增温带,对其他两带的不利影响较小,有时还产生有利效应。热污染对水体影响程度取决于热排放工业类型、排放量、受纳水体特点、季节和气象条件等。

各国对水热污染及其影响进行了多方面的研究,并制定了冷却水温度的排放标准。美国、俄罗斯等国按不同季节和水域,制定了冷却水温度的排放标准;德国以不同河流的最高允许增温幅度为依据,制定了冷却水温度排放标准;瑞士则以排热口与混合后的增温界限为最高允许值,确定排放标准。中国和其他一些国家尚未制定有关标准。

热污染对鱼类的影响

人类是温血动物,对于外界温度变化有良好的适应能力,而生活在水中的生物大多属于冷血动物,对于水温的改变非常敏感,忍受热污染的能力也非常有限。鱼类不断地洄游,一方面是为了觅食,另一方面也是为了寻求适温的环境。例如每年夏季,小管鱼类常洄游到台湾北部沿海;每年冬季,乌鱼常成群在台湾西岸沿海出现。这些都是鱼类寻求适温环境的行为。也就是因为水中生物对水温变化比较敏感,因此热污染在水中比在陆地上更容易造成生态环境的改变。

热污染提高水温对鱼类的影响说明如下:

(1)加快鱼类的新陈代谢率。

一般而言,水温每增加10℃,鱼的新陈代谢率就加倍,例如,25℃时新陈代谢率为15℃时的2倍,35℃时则增至4倍。水温增加会使水中的溶氧量减少,而鱼类却因新陈代谢加快而需要更多的氧。因此水温增加到某一限度,鱼类便会死亡。每一种鱼的致命温度并不相同,例如北美洲一种褐色鳟鱼的致命水温为26℃,而小龙虾则可以忍受水温升至35℃才死亡。

(2)可能使鱼类停止繁殖。

鱼类都是在一小范围的适温环境产卵,水温增高,鱼类排卵的数目往往就会减少,有时甚至无法排卵。而且,水温增高也会影响卵的正常发育。比如说,一种大西洋的鲑鱼受精卵,在2℃的温度中需经114天的孵化,小鱼才出来;水温提高到7℃,孵化期就缩短为90天,太早孵出的未必是健康的小鱼。鱼的成长也会受到影响,水温再提高,受精卵甚至都无法孵化了。因此,在一个比较封闭的水体中,例如小湖或小溪,水温提高到某一限度,虽然没使成鱼立刻死亡,但可能使某些鱼终将绝迹。

(3)会减短鱼的寿命。

由于水温增高会缩短卵的孵化时间以及加速鱼的新陈代谢率,因此很容易推想鱼的寿命也会减短。例如北美洲一种淡水水蚤在8℃的水温中可活108天,但在28℃的水中只能活29天,鱼的寿命减短了,当然,就长不到它应有的长度与重量。

(4)可能破坏食物链。

所谓食物链就是:大鱼吃小鱼、青蛙;小鱼、青蛙则以蚊虫、小虾等等为食;蚊虫、小虾等则以水草、藻类等为食。上述四类生物死亡后氧化分解产生营养盐分,又可做为水草、藻类等的养料。如果热污染的结果造成其中一类生物的死亡,也可能使得以其为食的生物死亡,依此类推,这个生态系统就可能因此而受到破坏。

提高水温对其他水中生物的影响度,也与鱼类的相差不多。然而鱼类会游泳,如果海洋受到热污染,鱼类尚能避开受污染的地方,伤害会减少一一些。但附着在海底的生物,例如珊瑚等,那就难逃一劫了。

核能电厂与热污染

核能电厂利用核子反应产生热能发电时,不可能使热能百分之百转换为电力。多余的废热需要利用大量冷水带走,发电机才能运转。比如我国台湾地区四周环海,海水很容易取得,因此台湾的核能电厂都是建在海边,利用海水冷却,使用过后的海水水温提高了,又被排回海洋。

一般而言,排放温水有2种方式:①建一条排放管到离岸稍远处,在中层排放,以避免伤害到海底生物。由于高温的海水较轻,排放后往上浮而渐与上层海水混合,等至浮到海面,水温已降低许多,对海洋生态的影响便可降低。利用这种方式排放温水比较好,但所花的成本也较高。②在海边直接排放于海面,用这种方式省钱,但对海洋生态的影响也较大。到目前为止,台湾现有的三座核能电厂都是用第二种方式,在海边把温水排放于海面。

到2008年为止,在台湾北部沿海的核一、核二厂,排放的温水并未造成多大影响。南部核三厂的温排水却伤害了排水口附近浅处的珊瑚。造成南、北核能电厂的区别并非核三厂的冷却系统设计比核一、二厂差,而是因为核三厂排水口附近刚好有很多生长良好的珊瑚,再加上当地海水的温度终年都比北部沿海的高3~5℃。核三厂所在的南湾在台湾最南端,在冬季时黑潮支流流入台湾海峡,南湾海水主要来自黑潮。夏季时中国南海海水流入台湾海峡,此时南湾海水主要来自中国南海。这两种水团的水温都很高,南湾冬季表面水温仍达24℃左右,夏季则常达29℃,甚至更高。所以它能够忍受温升的空间就小多了,也因此核三厂的温排水对生态的影响特别引人注意。

珊瑚最适合在热带与亚热带的温暖海洋中生长,台湾气候属亚热带型,特别是南湾海域位在台湾最南端,海水温度全年都在20℃以上,最适于珊瑚生长,而核三厂排水口附近又是珊瑚生长比较茂盛的地方。

根据调查,南湾已发现的珊瑚共有179种之多,这些珊瑚在35℃的高温海水中便会死亡,如在31~33℃的水温中,时间稍长,珊瑚便会白化,甚至死亡。

台湾电力公司早在20世纪80年代就开始建核三厂,有两部发电机。第一部于20世纪80年代初开始运转,冷却系统排出的温水水量不大,对排水口附近的珊瑚并无多大影响。到了1987年,两部机组开始稳定地同时发电。同年7月,部分排水口附近浅处珊瑚白化了。到了冬天,白化的珊瑚有些又重获生机,但到了来年夏天,珊瑚又白化了,而且面积有扩大的趋势。

破坏力极强的赤潮危害

“赤潮”,被喻为“红色幽灵”,国际上也称其为“有害藻华”,赤潮又称红潮,是海洋生态系统中的一种异常现象。它是由海藻家族中的赤潮藻在特定环境条件下爆发性地增殖造成的。海藻是一个庞大的家族,除了一些大型海藻外,很多都是非常微小的植物,有的是单细胞植物。根据引发赤潮的生物种类和数量的不同,海水有时也呈现黄、绿、褐色等不同颜色。

赤潮发生后,除海水变成红色外,一是大量赤潮生物集聚于鱼类的鳃部,使鱼类因缺氧而窒息死亡。二是赤潮生物死亡后,藻体在分解过程中大量消耗水中的溶解氧,导致鱼类及其它海洋生物因缺氧死亡,同时还会释放出大量有害气体和毒素,严重污染海洋环境,使海洋的正常生态系统遭到严重的破坏。三是鱼类吞食大量有毒藻类。赤潮发生时,海水的pH值也会升高,黏稠度增加,非赤潮藻类的浮游生物会死亡、衰减;赤潮藻也因爆发性增殖、过度聚集而大量死亡。

赤潮是在特定环境条件下产生的,相关因素很多,但其中一个极其重要的因素是海洋污染。大量含有各种有机物的废污水排入海水中,促使海水富营养化,这是赤潮藻类能够大量繁殖的重要物质基础,国内外大量研究表明,海洋浮游藻是引发赤潮的主要生物,在全世界4000多种海洋浮游藻中有260多种能形成赤潮,其中有70多种能产生毒素。它们分泌的毒素有些可直接导致海洋生物大量死亡,有些甚至可以通过食物链传递,造成人类食物中毒。

世界上已有30多个国家和地区不同程度地受到过赤潮的危害,日本是受害最严重的国家之一。近十几年来,由于海洋污染日益加剧,我国赤潮灾害也有加重的趋势,由分散的少数海域发展到成片海域,一些重要的养殖基地受害尤重。对赤潮的发生、危害予以研究和防治,涉及生物海洋学、化学海洋学、物理海洋学和环境海洋学等学科,是一项复杂的系统工程。

赤潮是在特定的环境条件下,海水中某些浮游植物、原生动物或细菌爆发性增殖或高度聚集而引起水体变色的一种有害生态现象。赤潮是一个历史沿用名,它并不一定都是红色,实际上是许多赤潮的统称。赤潮发生的原因、种类和数量的不同,水体会呈现不同的颜色,有红颜色或砖红颜色、绿色、黄色、棕色等。值得指出的是,某些赤潮生物(如膝沟藻、裸甲藻、梨甲藻等)引起赤潮有时并不引起海水呈现任何特别的颜色。

关于赤潮,人类早就有相关记载,如《旧约·出埃及记》中就有关于赤潮的描述:“河里的水,都变作血,河也腥臭了,埃及人就不能喝这里的水了”。赤潮发生时,海水变的黏黏的,还发出一股腥臭味,颜色大多都变成红色或近红色。在日本,早在腾原时代和镰时代就有赤潮方面的记载。1803年法国人马克·莱斯卡波特记载了美洲罗亚尔湾地区的印第安人根据月黑之夜观察海水发光现象来判别贻贝是否可以食用。1831~1836年,达尔文在《贝格尔航海记录》中记载了在巴西和智利近海面发生的束毛藻引发的赤潮事件。据载,中国早在2000多年前就发现赤潮现象,一些古书文献或文艺作品里已有一些有关赤潮方面的记载。如清代的蒲松龄在《聊斋志异》中就形象地记载了与赤潮有关的现象。

随着现代化工、农业生产的迅猛发展,沿海地区人口的增多,大量工农业废水和生活污水排入海洋,其中相当一部分未经处理就直接排入海洋,导致近海、港湾富营养化程度日趋严重。同时,由于沿海开发程度的增高和海水养殖业的扩大,也带来了海洋生态环境和养殖业自身污染问题;海运业的发展导致外来有害赤潮种类的引入;全球气候的变化也导致了赤潮的频繁发生。

公元1500年以前,旧约圣经中就曾经描写过发生于江河的赤潮——“江水变成了血。江里面的鱼死了……江水不再能饮用。”

2001年8月,这种情景出现在韩国南部各地区的海面上。

几百艘渔船在穿梭忙碌。但渔民们不是在捕鱼,而是在不停地向大海里抛洒黄土,治理迅速扩张的赤潮。韩国政府的投人12亿韩元,向韩国南部海域共抛洒了8万吨黄土。

8月6日,韩国西南部海域的全南道丽水市附近检出了旋沟藻,这是一一种具有毒性的赤潮生物。8月10日,韩国南部海域的庆南道南海郡附近也检测到旋沟藻活跃的迹象,其密度为1~2个/毫升。两地的“赤潮对策务实协商会”开始密切关注事态的发展。

旋沟藻属于藻类。每年的大部分时间,其孢子潜伏在海底。水温上升到合适温度以后,孢子开始发育,并且上浮到水深3~5米的位置。当年8月以来,韩国南海沿岸海水的水温在24~25℃,频繁的降雨使大量营养盐类冲刷入海,导致了赤潮的迅速发展。研究认为,旋沟藻能够产生一种溶血性毒素,海水中的个体数达到3000个/毫升或以上,就可能引发鱼类的大规模死亡。

14日下午6点,韩国政府发出当年第一次赤潮通报,地点是朝鲜半岛的正南方向,以全南道高兴郡南端的海面为中心的区域。这里的海面已经变成了深红色,并且还在不断扩大。据水产振兴院的调查,当天这一水域旋沟藻的个体数已经达到180~600个/毫升。

19日,韩国南部海域(高兴郡)旋沟藻的密度达到了3400~4000个/毫升。到22日下午,深红色的赤潮带已断断续续覆盖了大约200千米的狭长海域,形成了令人恐惧的气势。

21日,庆尚南道统营市蛇梁岛附近,大约4海里范围内的多个养渔场开始有鱼类死亡。

25日,国立水产振兴院向赤全罗南道高兴半岛以西海域以及庆尚南道巨济岛东南海域之内的地区下达赤潮通报。

26日下午5点,赤潮通报改为赤潮警报。这样,南海东部、东海南部海域已经全部处于赤潮警报范围。

投放黄土是目前国际公认的处理赤潮的方法。黄土能以颗粒或者络合物的形式吸附在赤潮生物的细胞膜上,并带动赤潮生物沉向海底。那里水温低,光照弱,营养盐类相对不足,不利于赤潮生物生长。

韩国庆尚南道的统营市位于朝鲜半岛东南部,统营市附近的海域是这次赤潮密度最高的地区之一。17日下午,从统营以西的全罗南道高兴郡传来了赤潮警报。18日下午,赤潮带即蔓延到了统营市的蛇梁岛。当天,当地各界动员了货船和拖网渔船共抛洒了260吨黄土。19日,在养渔场密集的10海里左右的海域又集中投放了200吨的黄土。除了不断地向海里抛洒黄土,各个渔村还购置了20多台赤潮清除机。每台机器每小时过滤200吨海水,24小时不问断地进行清除赤潮的作业。

为了切断赤潮生物的营养供应链,各养渔场广泛采取了减少鱼饲料投放的措施。一些地区停止投放饲料超过1星期。各个渔场的鱼死亡数量近100万尾,损失超过4亿韩元。

2001年9月3日中美洲地峡渔业和水产组织宣布,一场严重的赤潮正在袭击中美洲太平洋沿海地区,其中受影响最大的是哥斯达黎加、危地马拉和萨尔瓦多。

据该组织介绍,哥斯达黎加的赤潮形成于1999年年底,但是没有任何消失的迹象。在北部瓜纳卡斯特沿海,贝壳类吸收的毒素指数是人类承受此类毒素的最大限量的38倍以上。在中部沿海地区,贝壳类的毒素含量也大大超过限量。

危地马拉赤潮监控委员会在9月4日宣布全国海产业进入“红色戒备状态”,禁止捕捞、销售任何贝壳类海产品,同时告诫消费者不要食用虾头、鱼头及其内脏。

萨尔瓦多两大海产生产基地均受到赤潮的严重袭击。萨政府除禁止在国内销售贝壳类产品外,也“暂时中止”从危地马拉进口任何海鲜产品。

这次赤潮是自1987年以来影响面最广、持续时间最长、经济损失最严重的一次。哥斯达黎加有51人中毒,经济损失超过150万美元。萨尔瓦多和危地马拉的渔业生产也损失惨重。

中美洲各国还在9月11日,在哥斯达黎加首都圣何塞召开紧急会议,专门商讨联合对付赤潮的办法。

2003年在佛罗里达州由于赤潮引起的海牛的死亡数目达到了该州的第二次高峰。

佛罗里达州鱼类和野生生物保护委员会在报告中说到,2003年一共计98头海牛被怀疑死于赤潮。海藻赤潮主要集中在离佛罗里达州西南的沿海海湾的附近,2003年死亡的海牛总数到380头,仅次于1996年的由于赤潮引起的415头。2002年有305头海牛死亡。

Elsa Haubold,该州海牛的管理员,认为赤潮是由难闻的微小的海藻组成,这些海藻散发的神经毒素可能麻痹海牛或使他们呼吸困难,这种毒素散发在空中同样可以造成人的呼吸困难。

佛罗里达州是唯一的有永久自然海牛群州,因此每年对海牛的数量严格的调查。在佛罗里达种群估计大约仅有3000头海牛后,这种笨拙的哺乳动物被该州和联邦政府列为濒危种类。

该州每年都做海牛群的空中勘测,2003年1月调查的最新的计数是3113头。而从1991年第一次空中勘测的1465头以来,最多的一次是2001年的3276头。

但Haubold提出真正统计海牛的数目是困难的,调查结果可能与实际的海牛数目有很大的偏差。

同时佛罗里达州有97只宽吻海豚死亡,2只以上的海豚被海浪冲到罗斯玛丽海滩和St.Joe海湾的岸上,所有的海豚都在富兰克林和Santa Rosa县之间。有关官员认为可能是赤潮或有关的生物毒素所造成的。

2003年11月菲律宾渔业和水产资源办公署对菲律宾几个沿海地区发出赤潮警报,导致受害地区渔业和贝类产业,因受赤潮毒素影响而无法销售,损失近300万美元。

警报仍未解除,赤潮毒素含量仍然相对较高。

BFAR赤潮监测小组的负责人介绍,受影响的地区包括Zambales省的Palawig海湾、巴拉望岛的Honda海湾、Masbate省的Mandaon和Milagros海湾、Sorsogon省的Juag礁湖、菲特岛和萨马岛之间的SanPedro海湾、达沃地区的Balite海湾及三宝颜地区的Dumanquillas海湾。其中很地区都以盛产贝类闻名,贝类销售是当地渔民的主要经历来源。当地政府不得不发布贝类禁令,严禁有毒贝类流入市场,使当年菲律宾的贝类销售骤然减少。

2002年8月,南非西岸Elands Bay(位于开普敦北方近200千米处的一个偏僻小渔村,是南非西海岸岩礁龙虾主要产地之一)在1个月内发生2次赤潮,导致大量龙虾死亡。

第一次赤潮时上岸的龙虾将近300吨,当地居民曾争先前往捡取,但后来遭到渔业局及警方人员强力禁止。渔业局采取的做法是尽可能捡取还活着的龙虾,送到安全的海域放生,以减少资源的损失。但是通过2天抢救,放生的龙虾仅有约60吨。

渔业局科学家表示,1940年以来,大约每10年就有一次因赤潮而造成大量龙虾死亡,而过去这10年情况更为严重。他们曾做过各种研究,包括气象模式的变化,但仍无法查出赤潮泛滥的原因。由于适为龙虾繁殖季节,且大部分死亡的龙虾都在渔获体长限制以下,因此预计此次赤潮对资源的冲击应该在一二年后显现。

2006年以来,佛罗里达州西南沿海地带海龟死亡率持续上升。

监测人员的记录显示,2006年共有76只海龟搁浅在派尼拉斯县和科利尔县之间的海岸,而2005年同期只有66只海龟搁浅。4月24日,当局埋葬了一只被冲上佛州西南部那不勒斯海滩的重约70千克的海龟,海龟的死因还不明确。

2005年7月至10月中旬期间,帕斯克县到科利尔县之间的海滩共有216只海龟搁浅,其中大部分死亡,赤潮被认为是导致这些海龟搁浅的原因。

佛罗里达野生物研究所的野生物学家艾伦·福利说,赤潮在海滩上的遗留物可能是2006年海龟高死亡率的主要原因。

2008年3月由藻花引起的赤潮导致纳米比亚牡蛎业损害了大约70%的产量。纳米比亚的牡蛎行业受到了前所未有的负面影响,几乎面临崩溃的边缘。居住在Walvis海湾附近的当地牡蛎养殖商反映,在短短的6周里,他们已经遭受了3倍的损失。

赤潮使本国相关的牡蛎贸易损失了相当数量的贝类产品,推迟了近1年的国外市场扩张计划。

2001年5月,闽东四霜列岛海域首次发现赤潮,在闽南晋江围头至大嶝岛之间的围头湾也有赤潮发展趋势。根据监测继舟山海域和长江发生特大面积赤潮之后,5月15日闽东海洋环境监测站发现四霜列岛海域当年首次发生赤潮。赤潮颜色为黄褐色,呈条带状分布,面积大约150平方千米,距大陆20千米。因16日傍晚开始连续下雨,17日赤潮消失。海洋部门样品分析认为,此次赤潮生物种类为甲藻门的浮游植物,优势种为胶壳藻和夜光虫。

2006年10月末,渤海湾天津、黄骅附近海域出现大规模赤潮,经鉴定,其生物种类为球形棕囊藻。据有关专家介绍,渤海海域在这个季节发生棕囊藻赤潮尚属首次。

10月27日,沧州市海洋局在黄骅海域海面发现异常,海面有大面积棕色漂浮物。从直观看,水面漂浮物是直径为0.5~2.0厘米的透明球体,外膜为浅棕色,经鉴定分析为球形棕囊藻,由此确定该海域发生赤潮。监测人员出海监视发现,黄骅海域从歧口村(与天津交界)至黄骅港沿线海域,垂直海岸线纵深35千米均有赤潮,20千米以内最多。

11月1日,天津海洋环境监测中心站对天津港航及大沽锚地等300平方千米海域范围内监测发现,赤潮严重区主要集中在距岸边约20千米的近岸海域,球形棕囊藻密度由近岸向远海逐渐降低。

据河北省海洋环境监测中心介绍,此次发生赤潮的海域水体中营养盐含量不高,但浮游植物细胞数量非常高。加之天气情况特殊,气温、水温均较往年偏高,而且天气系统稳定,有利于浮游植物生长繁殖。

此次赤潮给黄骅渔业生产造成很大影响,每年伏季休渔结束后的9~11月,是渤海渔民打渔旺季,而赤潮的出现使大部分渔民不得不将渔船停泊在港口,等待赤潮结束后再次出海。

如今,赤潮已成为一种世界性的公害,美国、日本、中国、加拿大、法国、瑞典、挪威、菲律宾、印度、印度尼西亚、马来西亚、韩国等30多个国家和地区赤潮发生都很频繁。

上一章
离线
目录
下一章
点击中间区域
呼出菜单